The Functional Integral for a Free Particle on a Half-plane*

نویسنده

  • Michel Carreau
چکیده

A free non-relativistic particle moving in two dimensions on a half-plane can be described by self-adjoint Hamiltonians characterized by boundary conditions imposed on the systems. The most general boundary condition is parameterized in terms of the elements of an infinite-dimensional matrix. We construct the Brownian functional integral for each of these self-adjoint Hamiltonians. Non-local boundary conditions are implemented by allowing the paths striking the boundary to jump to other locations on the boundary. Analytic continuation in time results in the Green’s functions of the Schrödinger equation satisfying the boundary condition characterizing the self-adjoint Hamiltonian.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reflection of Plane Wave at Traction-Free Surface of a Pre-Stressed Functionally Graded Piezoelectric Material (FGPM) Half-Space

This paper is devoted to study a problem of plane waves reflection at a traction-free surface of a pre-stressed functionally graded piezoelectric material (FGPM). The effects of initial stress and material gradient on the reflection of plane waves are studied in this paper. Secular equation has been derived analytically for the pre-stressed FGPM half-space and used to show the existence of two ...

متن کامل

Reflection From Free Surface of a Rotating Generalized Thermo-Piezoelectric Solid Half Space

The analysis of rotational effect on the characteristics of plane waves propagating in a half space of generalized thermo-piezoelectric medium is presented in context of linear theory of thermo-piezoelectricity including Coriolis and centrifugal forces. The governing equations for a rotating generalized thermo-piezoelectric medium are formulated and solved for plane wave solutions to show the p...

متن کامل

Optimizing control motion of a human arm With PSO-PID controller

Functional electrical stimulation (FES) is the most commonly used system for restoring function after spinal cord injury (SCI). In this study, we used a model consists of a joint, two links with one degree of freedom, and two muscles as flexor and extensor of the joint, which simulated in MATLAB using SimMechanics and Simulink Toolboxes. The muscle model is based on Zajac musculotendon actuator...

متن کامل

Analysis of Multiple Yoffe-type Moving Cracks in an Orthotropic Half-Plane under Mixed Mode Loading Condition

The present paper deals with the mixed mode fracture analysis of a weakened orthotropic half-plane with multiple cracks propagation. The orthotropic half-plane contains Volterra type glide and climb edge dislocations. It is assumed that the medium is under in-plane loading conditions. The distributed dislocation technique is used to obtain integral equations for the dynamic problem of multiple ...

متن کامل

Multiple cracks in an elastic half-plane subjected to thermo-mechanical loading

An analytical solution is presented for the thermoelastic problem of a half-plane with several cracks under thermo mechanical loading using distributed dislocation technique. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. The stress field in a half-plane containing thermoelastic dislocation is ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992